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Qubit-mediated energy transfer between thermal reservoirs:
Beyond the Markovian master equation
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We study qubit-mediated energy transfer between two electron reservoirs by adopting a numerically exact
influence functional path-integral method. This nonperturbative technique allows us to study the system’s
dynamics beyond the weak coupling limit. Our simulations for the energy current indicate that perturbative-
Markovian master equation predictions significantly deviate from exact numerical results already at intermediate
coupling πραj,j ′ � 0.4, where ρ is the metal (Fermi sea) density of states, taken as a constant, and αj,j ′ is the
scattering potential energy of electrons, between the j and j ′ states. Perturbative Markovian master equation
techniques should be therefore used with caution beyond the strictly weak subsystem-bath coupling limit,
especially when a quantitative knowledge of transport characteristics is desired.
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I. INTRODUCTION

Quantum impurity models, including a subsystem inter-
acting with a reservoir, were proven useful in describing and
predicting many physical phenomena. The spin-boson model,1

representing the dynamics of a single charge on two states
coupled to a dissipative bath, e.g., a solvent, exhibits rich phe-
nomenology, including various phase transitions.2 It is relevant
for modeling charge transfer reactions in biological systems,2

photosynthesis,3 the Kondo problem for magnetic impurities,4

and quantum information processing in superconducting
Josephson tunneling junction qubits5 or nitrogen-vacancy
centers in diamonds.6 A variant of the spin-boson model is
the spin-fermion model, where a qubit, referred to as a spin or
a two-level system, interacts with a metallic-fermionic envi-
ronment. This model is also related to the Kondo model,4 only
lacking direct coupling of the reservoir degrees of freedom
to spin-flip processes. The generalization of the equilibrium
spin-fermion model, to include more than one Fermi bath,
provides a minimal setting for the study of dissipation and de-
coherence effects under the influence of an out-of-equilibrium
environment.7–10

In this work, we use the two-bath spin-fermion model
and investigate the energy exchange between two metals,
mediated by the excitation or relaxation of a nonlinear
quantum system, a qubit. For a scheme of this setup, see
Fig. 1. Physically, our model can describe the process
of radiative heat transfer between metals,11–13 and it can
be realized within a superconducting Josephson junction
circuit.10,14,15 We simulate the energy current characteristics
of the nonequilibrium spin-fermion model in a large parameter
range of coupling strengths by means of an influence-
functional path-integral (INFPI) technique developed by the
authors of Refs. 16 and 17. This numerically exact method
is built about the basic observation that in out-of-equilibrium
(and/or finite temperature) situations bath correlations have a
finite range, allowing for their truncation beyond a memory
time dictated by the voltage-bias and the temperature.8,9,18

Taking advantage of this fact, an iterative-deterministic
time-evolution scheme can be developed where convergence
with respect to the memory length can in principle be
reached.16,17

Our main objective here is to explore qubit-mediated energy
current characteristics beyond standard perturbative methods.
Particularly, we would like to find when the Golden-Rule-
type (second-order perturbation theory) Markovian master
equation method provides a correct, quantitative, or qualitative,
description of the exact behavior. This task is important
since master equation tools have been extensively adopted
for studying problems in charge, spin, and energy transfer
phenomenology in quantum dots and molecular junctions, see,
for example, Refs. 13,19–28.

The plan of the paper is as follows. In Sec. II we present the
nonequilibrium spin-fermion model. We provide expressions
for observables of interest in Sec. III. The two methods
confronted, INFPI and the perturbative Markovian master
equation, are discussed in Sec. IV, with the results included
in Sec. V. Section VI. concludes. For simplicity, we use the
conventions h̄ ≡ 1, electron charge e ≡ 1, and Boltzmann
constant kB = 1.

II. MODEL

The system of interest comprises of two metallic leads,
ν = L,R, prepared at different temperatures but at the same
chemical potential. These metals are connected indirectly
by a nonlinear quantum unit, a two-level subsystem. The
Hamiltonian includes three contributions

H = HS + HF + V, (1)

where

HS = �σz,

HF = HL + HR, Hν =
∑

j

εj c
†
ν,j cν,j , (2)

V = VL + VR, Vν = σx

∑
j,j ′

αν,j ;ν,j ′c
†
ν,j cν,j ′ .

Here, σx,y,z represent the Pauli matrices. The subsystem HS

includes two states, |0〉 and |1〉, with a tunneling splitting 2�.
It can be realized within a nonlinear resonator mode, or it
can represent an impurity in a solid-state environment. This
subsystem interacts with two fermionic reservoirs, comprised
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FIG. 1. A schematic representation of our model system. Electron
transfer between the metals is blocked, but energy current is
flowing through an excitation or deexcitation of the intermediate
anharmonic (two-state) quantum system. The curved arrows represent
energy transfer processes between the leads and the intermediating
subsystem. In our work here we set μL = μR and take TL > TR .

in HF , where c
†
ν,j (cν,j ) creates (annihilates) an electron at

the ν = L,R metal lead with momentum j , disregarding the
electron spin degree of freedom. The qubit-metal interaction
term V couples scattering events within each metal to
transitions within the subsystem. For simplicity, we assume
that the coupling constants αν are energy independent and
real numbers. Note that we do not allow for charge transfer
processes between the two metals, assuming the tunneling
barrier is high. However, energy is transferred between the
two metals, mediated by the excitation of the intermediate
nonlinear quantum system, see Fig. 1. Using the Hamiltonian
form (2), the subsystem dynamics and the energy current can
be readily attained within a Markovian master equation, as we
explain in Sec. IV B

The Hamiltonian (2) can be transformed into the standard
spin-fermion model of zero energy spacing with a unitary
transformation

U †σzU = σx, U †σxU = σz, (3)

where U = 1√
2
(σx + σz). The transformed Hamiltonian

HSF = U †HU includes a σz-type electron-spin coupling

HSF = �σx +
∑
ν,j

εj c
†
ν,j cν,j

+ σz

∑
ν,j,j ′

αν,j ;ν,j ′c
†
ν,j cν,j ′ . (4)

In this representation, the dynamics can be conveniently
simulated using INFPI; a brief discussion is included in
Sec. IV A.

III. OBSERVABLES

We assume a factorized initial state with the total density
matrix ρ(0) = ρS(0) ⊗ ρF . Here ρS denotes the reduced den-
sity matrix (RDM) of the subsystem. The reservoirs’ density
matrix at time t = 0 is given by ρF = ρL ⊗ ρR , and these
states are canonical, ρν = e−βν (Hν−μνNν )/Trν[e−βν (Hν−μνNν )].
Here we trace over the ν reservoirs’ degrees of freedom. In
our simulations below we take μL = μR , but assume different
initial temperatures TL �= TR . We refer to this setup as a
“nonequilibrium environment” since the two reservoirs are
prepared in different states. At time t = 0 we put into contact
the two Fermi baths through the quantum subsystem and follow

the evolution of the RDM and the energy current, to steady
state. Since the energy current through the subsystem is driven
by a temperature bias, we can also refer to it as a “heat current.”

The time evolution of the RDM is obtained by tracing ρ over
the fermionic reservoirs’ degrees of freedom (TrF = TrLTrR),

ρS(t) = TrF [e−iH tρ(0)eiHt ]. (5)

The definition of the energy current operator is more
subtle,29,30 as different-plausible choices provide distinct
results in the short time limit. At long time, in the steady-state
limit, these definitions yield the same value. Here, we follow
the analysis of the authors of Ref. 29, and define the energy
current operator, e.g., at the left contact, as

ĴL = i

2
[HL − HS,VL]. (6)

The current is defined positive when flowing from L bath to the
subsystem. This expression can be derived by assuming that
there is an operator continuity equation for the energy density
operator, and by partitioning the interaction energy between
the three “sites,” the L and R baths, and the subsystem.29 In
the steady state the expectation value of the time derivative of
the interaction is zero

Tr

[
ρ

∂VL

∂t

]
≡

〈
∂VL

∂t

〉
= i〈[HS + HL,VL]〉 = 0, (7)

and we reach the relation

〈[HS,VL]〉 = 〈[VL,HL]〉, (8)

where we have assumed that [VL,VR] = 0. We can now
identify the averaged energy current, in the long time limit,
as

〈JL〉 ≡ TrSTrF [ĴLρ(t)] = −i〈[HS,VL]〉. (9)

Alternatively, one can derive this expression from the Heisen-
berg time-evolution relation for the L bath energy operator

dHL

dt
= i[H,HL] = i[VL,HL]. (10)

The average energy current is given by the rate of energy
change

〈JL〉 = −
〈
dHL

dt

〉
, (11)

with the minus sign included to accommodate the sign
convention for the current. Using the steady-state result (8),
we immediately retrieve Eq. (9).

We now evaluate the relevant commutator, using the
Hamiltonian (2),

[HS,VL] = 2i�σy

∑
l,l′

αL,l;L,l′c
†
L,lcL,l′ . (12)

The energy current then reduces to

〈JL〉 = 2�TrS[σyTrF [ALρ(t)]], (13)

which can be conveniently expressed in terms of subsystem
operators as

〈JL〉 = 2�TrS[σyAS(t)]. (14)
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Here we defined a bath operator, quadratic in the creation and
annihilation operators,

AL ≡
∑
l,l′

αL,l;L,l′c
†
L,lcL,l′ , (15)

and the related-reduced subsystem operator

AS(t) ≡ TrF [ALρ(t)]

= TrF [eiHtALe−iH tρ(0)]. (16)

We emphasize that expression (14) is designed to provide
the steady-state value and not the transients, given our
assumption (7).

The two operators ρS(t) and AS(t) are subsystem operators.
They are simulated in the next section directly, using INFPI, or
studied in a perturbative manner, under the Markovian limit,
to provide Kinetic-type expressions.

IV. METHODS

A. Path-integral simulations

The principles of the INFPI approach have been detailed in
Refs. 16 and 17, where it has been adopted for investigating
dissipation effects in the nonequilibrium spin-fermion model
and charge occupation dynamics in the interacting Anderson
model. Other applications include the study of the intrinsic
coherence dynamics in a double quantum dot Aharonov-
Bohm interferometer,31 the exploration of relaxation and
equilibration dynamics in finite metal grains,32 and the study
of electron-phonon effects in molecular rectifiers.33

Here, using INFPI, we can directly simulate both the
dynamics of the reduced density matrix ρS(t) [Eq. (5)], and the
time evolution of subsystem expectation values, particularly
AS(t) [Eq. (16)], which can be used to obtain the energy current
〈JL〉, Eq. (14). In practice, for achieving fast convergence, we
have simulated directly the averaged current

J = 1
2 (〈JL〉 − 〈JR〉). (17)

The negative sign in front of 〈JR〉 goes back to the sign
convention; the current 〈Jν〉 is defined positive when flowing
from the ν reservoir, into the junction.

Algorithmic details of the INFPI method were elaborated on
in Refs. 9 and 33, thus we only include the main principles here.
The algorithm is based on a Trotter breakup of a short-time
time evolution operator into two parts: a (simple) time evolu-
tion term that depends on the subsystem Hamiltonian, and a
term that accommodates the reservoirs Hamiltonians and their
interactions with the subsystem. Collecting the contribution
of the latter terms along the subsystem path, we construct the
so-called “influence functional” (IF), which involves nonlocal
dynamical correlations. The IF has an analytical form in some
special cases;18 in the present model its form is only known
in the weak-intermediate coupling limit,8,9 thus we evaluate it
numerically by energy-discretizing the Fermi sea.

The main conceptual element behind the INFPI approach
is the observation that at finite temperatures and/or nonzero
chemical potential bias bath correlations exponentially decay
in time, allowing for their truncation beyond a memory time
τc. The dynamics can then be achieved by defining an auxiliary
density matrix, or more generally, a subsystem operator

[e.g., AS(t) of Eq. (16)], on the time window τc. This nonlocal
object can be iteratively evolved from the subsystem-bath
factorized initial condition, to the present time t .

Our path-integral method involves three numerical param-
eters: (i) the number of states used in the discretization of
each Fermi sea L; (ii) the time step adopted in the Trotter
breakup δt ; and (iii) the memory time accounted for τc, beyond
which the IF, accommodating the effect of the reservoirs on the
subsystem, is truncated. The convergence of INFPI is verified
by confirming that the results are insensitive to the reservoirs
discretization, the finiteness of the time step, and the memory
size τc = Nsδt , with Ns as an integer. It should be noted that
minimizing the Trotter breakup error, taking δt → 0, conflicts
with the need to cover the memory time window τc. Since our
computational effort scales as d2Ns , where d is the Hilbert
space dimensionality of the subsystem, we are practically
limited to Ns < 10. This in turn implies that the time step
selected must be large enough, so as to cover the characteristic
decorrelation time τc with few (Ns) blocks.

B. Markovian master equation

The dynamics of the model (2), and variants, can be
analyzed in the weak subsystem-bath coupling limit under
the Markovian approximation to yield quantum mechanical
kinetic-type equations.34 This approach relies on several
standard approximations. First, it is based on a second-
order perturbation theory expansion of the quantum Liouville
equation in the subsystem-bath parameter, and as such it is
essentially limited to describe dynamics of subsystems weakly
coupled to their environments. Under this approximation,
once taking a factorized (subsystem-bath) initial condition,
one derives a set of coupled integrodifferential equations for
the elements of the (subsystem) RDM. To simplify these
equations, the Markovian assumption is invoked, relying on
a time-scale separation between the subsystem (slow) and
the bath (fast). This step reduces the integrodifferential equa-
tions into time-local equations. The result, e.g., the Redfield
equation,35 can be feasibly solved numerically or analytically
in the transient regime36 or in the steady-state limit.37 In some
cases, one may invoke an additional secular approximation, so
as to separate the dynamics of the diagonal and off-diagonal
elements of the RDM. The secular approximation is typically
justified when the energy differences between the subsystem
levels (�E/h̄) are large compared to the subsystem relaxation
rates.

This standard treatment has been used in many recent works
for investigating energy, spin, and charge transfer in open
quantum systems.20,21 Particularly, it has been recently adopted
for modeling radiative the energy transfer between metals,13,28

and for studying charge and energy transfer phenomenology
in mesoscopic systems19,22,24,25 and single molecules.23,38 It
is thus important to test the suitability and accuracy of this
common and well-accepted approximate scheme against exact
results.

It should be noted that there are numerous flavors for the
quantum Kinetic approach. For example, one may go beyond
the standard subsystem-bath perturbative treatment (used in
this work), by performing a unitary transformation of the
Hamiltonian. In the resulting Hamiltonian the perturbative

195436-3



DVIRA SEGAL PHYSICAL REVIEW B 87, 195436 (2013)

parameter may effectively include strong subsystem-bath
interactions. This idea is employed in, e.g., studies of phonon-
assisted electron,39 exciton,40 and heat transfer,41 by adopting
the small polaron transformation.42 Here, we perform the
perturbative expansion on the Hamiltonian (2) with α as
the perturbative parameter. For convenience, we refer to the
resulting rate equations as “Markovian master equations,”
without specifying the perturbative scheme.

Following the steps explained above using the model (2),
we find that the probabilities Pn to occupy the |n〉 state of the
subsystem n = 0,1 of energy En, satisfy the master equation

Ṗn =
∑
m

Pmkm→n − Pn

∑
m

kn→m, (18)

where the transition rate from the state |m〉 to |n〉 (m �= n and
m,n = 0,1 here) is additive in the L and R reservoirs

kn→m = kL
n→m + kR

n→m, (19)

due to the linear form of the interaction.21,43 It should be
noted that in the present two-state model one does not need
to invoke the secular approximation for deriving (18): Given
the structure of the Hamiltonian (2), one immediately obtains
from the perturbation expansion time-convolutionless rate
equations, where the off-diagonal elements of the reduced
density matrix are decoupled from the population dynamics,
even beyond second-order perturbation theory.44

In the steady state, taking Eq. (14) as a starting point,
one can show that in the weak coupling limit and under the
Markovian approximation the energy current across the system
reduces to29 (〈JL〉 = J in the steady state)

J =
∑
m,n

Em,nPnk
L
n→m, (20)

with Em,n = Em − En. At the level of the Golden-Rule
formula, the transition rates are given by13

kν
n→m

= 2π
∑
j,j ′

|αν,j ;ν,j ′ |2nν
F (εj )

[
1 − nν

F (εj ′)
]
δ(εj − εj ′ − Em,n)

= 2π

∫
dεnν

F (ε)
[
1 − nν

F (ε − Em,n)
]
Fν(ε).

= −2πnν
B(Em,n)

∫
dε

[
nν

F (ε) − nν
F (ε − Em,n)

]
Fν(ε). (21)

From the last relation we note that the thermal properties
of the reservoirs are concealed within both the Fermi-
Dirac distribution function nν

F (ε) = [e(ε−μν )/Tν + 1]−1 and the
Bose-Einstein occupation factor nν

B(ε) = [eε/Tν − 1]−1. It is
therefore clear that when the integral yields a temperature-
independent constant, the statistic of the reservoirs is fully
bosonic.13 The other element in Eq. (21) is a dimensionless
interaction term

Fν(ε) = |αν |2ρν(ε)ρν(ε − Em,n), (22)

which encloses the properties of the reservoirs, multiplied
by the subsystem-bath (energy-independent) couplings αν .
Once we assume that the density of states is a constant,45

Fν(ε) ≈ Fν(μν), the integration in Eq. (21) can be readily
performed when the Fermi energies are situated far from the

conduction band edges.45 Making use of the following relation∫ ∞

−∞
dε

[
nν

F (ε) − nν
F (ε − Em,n)

] = −Em,n, (23)

we reach the closed-form expression

kν
n→m = 2πnν

B(Em,n)Em,nFν(μν). (24)

Note that nB(−Em,n) = −[nB(Em,n) + 1], thus the excitation
and relaxation rates induced by the ν reservoir satisfy the
detailed balance relation kν

n→m/kν
m→n = e−Em,n/Tν .

Going back to Eq. (2), we recognize that in this two-state
model E1,0 = 2�. It is now useful to express the rates in terms
of a subsystem-bath interaction parameter

ν
F (2�) ≡ 2πFν(μν)2� = 2

2�

π
[πρν(μν)αν]2, (25)

where we recall that both density of states and the interaction
parameter α are assumed to be energy independent. Using this
definition, the excitation and relaxation rate constants reduce
to

kν
1→0 = ν

F (2�)
[
1 + nν

B(2�)
]
,

(26)
kν

0→1 = ν
F (2�)nν

B(2�).

For simplicity, we do not include below the explicit depen-
dence of ν

F and nν
B on energy; both quantities should be

evaluated at the subsystem energy gap 2�. We calculate the
population of the states in the steady state by putting Ṗn = 0 in
Eq. (18). With this at hand, the energy current (20) simplifies
to41

J = 2�
L

F R
F

[
nL

B − nR
B

]
L

F

(
1 + 2nL

B

) + R
F

(
1 + 2nR

B

) . (27)

This expression provides the steady-state energy current in the
weak coupling limit, under the Markovian approximation.

A more involved, noninteracting blip-approximation
(NIBA) type scheme,1 can be implemented for following the
qubit dynamics in the nonequilibrium spin-fermion model.7

Furthermore, besides the qubit dynamics itself, the heat
current can be simulated within the NIBA approximation by
extending a generating function technique developed by the
authors of Ref. 46 for the study of transport behavior in the
nonequilibrium spin-boson model. Here we contain ourselves
with the simpler, more standard, and common Markovian
master equation, with the objective to provide insight on its
applicability and accuracy for the large community adopting it
in studies of charge, spin, and energy dynamics in mesoscopic
and molecular systems.

V. RESULTS

We compare INFPI simulations to master equation predic-
tions. Within INFPI, the current is simulated directly using
Eqs. (16) and (14), and we show results only in the long time
(quasi) steady-state limit. The closed-form master equation
expression is given in Eq. (27). Practically, we calculate
the current directly from Eq. (20) using the rates (21) since
deviations from the wide-band limit may show given the
finite value employed here for the bandwidth, for details
see the discussion of Fig. 2.
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FIG. 2. (Color online) Energy current as a function of metal-
qubit coupling parameter ν

F using the bandwidth D = 2, � = 0.1,
TL = 0.4, and TR = 0.2. INFPI numerical parameters are taken as
δt = 1 and Ns = 9. Dashed line: Master equation results. INFPI
results appear in symbols, � for L = 40 and ◦ when taking the
asymptotic L → ∞ limit. Inset: Zooming over the small coupling
limit; the current linearly scales with ν

F . The inset also displays
results using a broader band with D = 4. INFPI results () are
compared to master equation data (full line). The case of D = 10
(using master equation) is marked by dashed-dotted line. It practically
overlaps with the full line of D = 4.

We use here the following set of parameters: An energy gap
2� = 0.2 (arbitrary units) for the subsystem, bands extending
from zero to D = 2 with a flat density of states and a linear
dispersion, high enough temperature such that Tν � �, and the
equilibrium Fermi energies located at the center of the band.
We also define the dimensionless parameter

φν = πρναν, (28)

which is varied between 0 and 0.8 here, where convergence is
achieved. This choice corresponds to 0 < ν

F < 0.08 when
� = 0.1, see Eq. (25). For this set of model parameters,
we have confirmed that selecting δt = 0.8–1.5 and Ns = 6–9
(yielding memory time τc � 8) provides converging results,
see Figs. 5(b), 6(b), and 7(b).

Before turning to simulations, it is important to identify
the regime of weak subsystem-bath coupling. It holds when
ν

F /(2�) � 1, but practically it is enough to demand that
ν

F /(2�) < 0.1, with a large subsystem gap relative to
the coupling energy. The intermediate limit is defined in
the range ν

F /(2�) ∼ 0.1–0.25. Now, since ν
F /(2�) = 2

π

[πρν(μν)αν]2, we can also write these regions using the dimen-
sionless parameter φν . The relation φν � 0.3 represents the
weak coupling limit, 0.3 � φν � 0.6 covers the intermediate
regime, and φν � 0.6 reaches the strong coupling limit. The
dimensionless parameter φν is also related to the scattering
phase shift,47 which should be small at weak coupling. Thus,
the weak coupling limit can be also identified when φν ∼
tan φν is satisfied.

Figure 2 displays the energy current as a function of the
interaction energy for a symmetric junction L

F = R
F . We

find that when ν
F � 0.02, the master equation-derived energy

current overestimates the exact result by more than 10%. In
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FIG. 3. Converging the data of Fig. 2 to the L−1 → 0 limit, with
the intercept representing the asymptotic result.

the strong coupling limit, the master equation overvalues the
correct numbers by a factor of 2. More significantly, this
Golden-Rule-based method cannot reproduce the saturation
effect of the current with the subsystem-bath interaction
parameter, and it wrongly predicts a linear scaling J ∝ ν

F .
Note that we include INFPI results both for the case of
L = 40 bath states (�), and in the asymptotic L → ∞ limit
(◦), obtained by extrapolating the linear J vs. L−1 curves to
L−1 → 0, see Fig. 3. We find that this extrapolation affects the
results by up to 4% at strong coupling, while the weak coupling
values are unaffected. While we do not show transient data for
the current, we comment that the steady state has been reached
at � × t ∼ 50–150 in the weak coupling limit; it is established
much faster, � × t ∼ 5 − 10 at strong coupling.

The role of the bandwidth is studied in the inset of
Fig. 2, where we compare D = 2 results to the case of broader
bands with D = 4. Since INFPI involves discretized Fermi
seas, it is technically difficult to use it for describing broad,
yet continuous, bands, as many electronic states should be
employed. We thus show results only in the weak coupling
limit when broad-band simulations converge. Note that master
equation calculations indicate that bands of D = 4 practically
serve as broad bands (the dashed-dotted line overlaps with full
line). We conclude that while the change from D = 2 to D = 4
does lead to the enhancement of the current by ∼7%, both
curves consistently shift and the observed trends are expected
to be similar, even at strong coupling, as the relation D > ν

F

is maintained.
We correlate transport behavior of the junction with a study

of the dissipative dynamics of the spin polarization, as obtained
from INFPI, in Fig. 4. We observe weakly damped coherent
oscillations in the weak coupling limit when the perturbative
master equation well describes the dynamics. These oscil-
lations still survive at intermediate coupling, but at strong
coupling the polarization exponentially decays in time (inset).
Crucial parameters of the model are the scattering phase shifts
δ±. In equilibrium, the phase shifts are given by47,48

tan δ± = φL,R. (29)

Out-of-equilibrium, �μ �= 0, the phase shifts are complex
numbers.48 In the spin-boson model the Kondo dimensionless
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FIG. 4. (Color online) Polarization dynamics at different cou-
pling strengths, for the same set of parameters as in Fig. 2. Results
were obtained using INFPI, and they are displayed in the basis in
which the Hamiltonian (4) is presented.

dissipation coefficient ξ represents a characteristic exponent in
the system: At zero temperature and zero energy bias the spin
displays damped coherent oscillations for ξ < 0.5, relaxation
dynamics between 0.5 � ξ < 1, and a localization phase for
ξ � 1 (Ref. 49). Thus, this parameter controls dissipation-
induced phase transitions. In the fermionic analog it can be
shown that the characteristic exponent is given by ξ = (δ2

+ +
δ2
−)/π2, see Ref. 48. Since |δ±| � π/2, ξ � 1/2. Thus, in the

spin-fermion model described in this paper the spin cannot
manifest the localization behavior, and a large φ value brings
us to the relaxation scenario, as indeed observed in Fig. 4.

The current-temperature characteristics of the junction
are depicted in Figs. 5 through 7, using different coupling
strengths. We find that at weak coupling the Markovian master
equation very well reproduces the qualitative and quantitative
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FIG. 5. (Color online) (a) Energy current-temperature character-
istics at weak coupling ν

F = 0.005 (or equivalently φν = 0.2) for
the same set of parameters as in Fig. 2. We vary TL, but keep TR

fixed, TR = 0.2. (b) Convergence behavior with increasing memory
size. Data were produced with three different time steps δt = 0.8, 1.0,
and 1.2.
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FIG. 6. (Color online) (a) Energy current-temperature character-
istics at intermediate coupling, ν

F = 0.032 (φν = 0.5), for the same
set of parameters as in Fig. 2. We vary TL, but keep TR fixed, TR = 0.2.
(b) Convergence behavior with increasing memory size. Data were
produced with three different time steps δt = 0.8, 1.0, and 1.2.

aspects of the current, even at a large temperature difference,
see Fig. 5. The convergence behavior of the INFPI method at
different temperature biases is displayed in Fig. 5(b), where we
show the energy current as obtained using different memory
time τc and time steps. At intermediate couplings, Fig. 6
shows that the master equation overestimates exact results
by up to 25% at large temperature differences. When the
subsystem-bath coupling is large, we managed to converge
simulations only up to the bias TL − TR ∼ 0.2. The Kinetic
method now provides values that are a factor of 2 larger than the
exact numerical data. It is important to note that the qualitative
current-temperature features are correctly reproduced within
the Markovian master equation, even at strong coupling.
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FIG. 7. (Color online) (a) Energy current-temperature character-
istics at strong coupling, ν

F = 0.072 (φν = 0.75), for the same set of
parameters as in Fig. 2. We vary TL, but keep TR fixed, TR = 0.2. (b)
Convergence behavior with increasing memory size: Results converge
only at small bias, TL − TR < 0.4. Data were produced with three
different time steps, δt = 0.8, 1.0, and 1.2.
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However, if one is interested in quantitative information,
master equation can be used in its strict regime of applicability
only ν

F /� � 0.1. The Data in Figs. 5 to 7 are presented for a
fixed value of bath states L = 40 since we have confirmed that
taking the large-L limit only corrects the current by � 4%, at
both low and high temperature biases.

VI. SUMMARY

We have studied energy transfer between metals mediated
by a quantum impurity, using two approaches: Numerically
exact path-integral simulations and analytic results from a
Golden-Rule-type Markovian master equation treatment. We
found that standard master equations fail to reproduce the
current-interaction energy characteristics already at interme-
diate system-bath couplings, as it can only provide a linear en-
hancement of the current with the subsystem-bath interaction,
missing a saturation effect. In contrast, the current-temperature
characteristics are produced in a qualitatively correct way by
a master equation formalism, though the actual values deviate
by 100%, and more, at high temperature biases and at strong
coupling.

Our results are beneficial for the critical testing of common
master equation techniques. The methods described are also

useful for practically modeling superconducting-based qubit
devices.50 While a master equation treatment offers simple-
intuitive expressions that often allow to discern essential
transport characteristics, already at intermediate system-bath
couplings it may overestimate the current by ∼10%, up to
a 100% incorrect enhancement at strong coupling. These
deviations are certainly important when a quantitative analysis
of device efficiency is performed. In particular, the calcula-
tion of energy conversion efficiency in conducting junctions
should be done with caution when a master equation is
of use.22,26,51

In our future work we plan to study the heat current
characteristics in the complementary spin-boson type molec-
ular junction model.41 This could be done by extending the
Feynman-Vernon IF expression52 to describe the evolution
of other operators besides the reduced density matrix. Alter-
natively, one could use the bosonization approach and draw
general results for the nonequilibrium spin-boson problem,
based on the spin-fermion model calculations presented
here.
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